

Hybrid Relightable 3D Gaussian
Rendering

DESIGN DOCUMENT

Senior Design May 2025 Team 40
Clients: Jackson Vanderheyden & Brian Xicon

Advisor: Dr. Simanta Mitra
Team Members:

Luke Broglio,
 Ethan Gasner,

Kyle Kohl,
Jackson Vanderheyden,

Brian Xicon,
sdmay25-40@iastate.edu

https://sdmay25-40.sd.ece.iastate.edu

Executive Summary
This project, the Hybrid Relightable 3D Gaussian Rendering, is designed to create

high-quality 3D models using machine learning from videos of everyday objects. The user can then
use it in 3D modeling spaces like games. We wanted our project to be used by anyone without
specialized equipment and to be available to everyone to download our program. The goal was for
the user just to take a video of an object with their phone and send it to their Unity project. After
running our program, it should have a high-quality 3D Gaussian model of the object. Our program
was to split our project into two parts: the machine learning part and the graphics path tracer part.
The machine learning part was broken down into Structure-For-Motion and the Optimizer. The
Structure-For-Motion code took the video of an object and transformed it into Gaussian points in
the form of a ply file that was then passed into the Optimizer code. The Optimizer code took the
cloud of Gaussian points and extracted data from the points using a PyTorch ML model. This data
was then passed to the Unity path tracer code as a .ply file. With this information, the Unity side
could create a 3D Gaussian object to raytrace. Our design meets the standard need for high-quality
3D Gaussian models. The requirements for anyone running our program would be having Unity
installed and an NVIDIA graphics card to run the ML. With these two requirements, it doesn’t
reach everyone, but we believe anyone who would like to use our program would most likely meet
the requirements already. The following steps of our projects would be to increase performance, get
it to run faster and produce higher quality 3D models, and add more features to the scope.

Learning Summary
DEVELOPMENT STANDARDS & PRACTICES USED

Standards:

-​ IEEE/ISO/IEC 12207-2017

-​ ISO/IEC 23053:2022

-​ ISO/IEC 23488:2022

Practices:

-​ Agile workflow

-​ Git

-​ Regular Sprint Reports

SUMMARY OF REQUIREMENTS

-​ The system shall input a Structure from Motion (SfM) point cloud for the Gaussian model
generator. Rationale: Gaussian optimizers initialize from and require a point.

-​ The system shall take a Gaussian model, which is composed of position, opacity,
anisotropic covariance, and spherical harmonics, as input for the 3D Gaussian parser.
Rationale: This format is required for Gaussian parameters.

-​ The system shall input a 3D Gaussian model for the Axis-Aligned Bounding Box (AABB)
Bounding Volume Hierarchy (BVH) generator.

-​ The system shall take Unity mesh objects as input for the AABB BVH generator.

-​ The system shall take 3D Gaussian models with constructed AABBs, triangle meshes with
constructed AABBs, and camera parameters as input for the hybrid Gaussian and triangle
mesh ray tracer. Rationale: All data is required to render a scene accurately

-​ The system shall take the final rendered texture from the hybrid Gaussian triangle mesh ray
tracer as input for the Unity Camera’s rendered texture. Rationale: We write to a texture
and blit it to the screen to override Unity’s default camera render pipeline.

-​ When rendering the next frame, the system shall place all paths into the ended paths
buffer. Rationale: primary path generation operates on all ended paths.

-​ When the primary ray generation compute shader is called, and the ended paths buffer
contains paths, the system shall generate a new origin and ray direction to align the path
with its associated pixel for each path in the ended paths buffer. Rationale: Initialize all
paths to start at the camera’s origin and direction.

-​ When the determined path intersection is computed shader is called, and the ended paths
buffer contains paths. The system shall calculate ray intersections given the path direction.
If the path hits a Gaussian model or a triangle mesh, add the path to the continuing paths
buffer; otherwise, add the path to the ended paths buffer.

-​ When the lighting calculation computes the shader is called, and the continuing paths
buffer contains paths, the system shall determine how much light the surface absorbs at the
intersection point and calculate the reflection direction. If the path has reached its max
bound limit, don’t let it continue.

-​ Initial State: A video or series of images is used as input to the SfM point cloud generator.

-​ Intermediate State: SfM point cloud generator produces a sparse point cloud correlating to
object color and geometry. This is used as input to the Gaussian optimizer.

-​ Final State: Gaussians are initialized at point positions with default normals; PyTorch
Gaussian optimizer shall adjust the normals and other parameters to align with the lighting
environment.

-​ The system should be available as a package for the Unity Game Engine. It should be able
to be added to existing Unity projects and work with the existing tools provided by Unity.

-​ The system should be easy to use with the tools and systems provided by the Unity engine
and integrate naturally with the rest of the system.

-​ The system should be intuitive and self-explanatory, so it's usable by someone without a
technical or graphics programming background.

-​ The system should run in real-time. This means that the system should allow the user to
change the scene's lighting or the location of the camera's angle, and the system should
update the scene dynamically at 30 FPS.

-​ The system should produce high-quality renders that don’t appear fake to the user, i.e.,
renders don’t contain glaring visual artifacts like noise, shadow ripples, or erroneous
sampling.

-​ The system should be available for download as a Unity package using Unity's package
manager.

APPLICABLE COURSES FROM IOWA STATE UNIVERSITY CURRICULUM

List all Iowa State University courses whose contents apply to your project.

-​ Com S 3360

-​ Com S 3090

-​ Com S 4370

-​ Com S 2280

-​ Com S 4740

-​ Com S 4170

-​ ENG 3140

-​ Com S 3270

-​ Math 2070

NEW SKILLS/KNOWLEDGE ACQUIRED THAT WERE NOT TAUGHT IN COURSES

-​ Compute Shaders

-​ Raytracing

-​ Python Scripting

-​ Unity Asset Store

-​ Gaussian Splatting

-​ Physically Based Rendering

Table of Contents
Executive Summary​ 1
Learning Summary​ 1

Development Standards & Practices Used​ 1
Summary of Requirements​ 1
Applicable Courses from Iowa State University Curriculum​ 3
New Skills/Knowledge Acquired That Were Not Taught in Courses​ 3

1 Introduction​ 7
1.1 PROBLEM STATEMENT​ 7
1.2 INTENDED USERS​ 7

2 Requirements, Constraints, And Standards​ 8
2.1 REQUIREMENTS & CONSTRAINTS​ 8
2.2 ENGINEERING STANDARDS​ 10

3 Project Plan​ 11
3.1 Project Management/Tracking Procedures​ 11
3.2 Task Decomposition​ 11
3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria​ 12
3.4 Project Timeline/Schedule​ 14
3.5 Risks and Risk Management/Mitigation​ 15
3.6 Personnel Effort Requirements​ 16
3.7 Other Resource Requirements​ 19

4 Design​ 19
4.1 Design Context​ 19

4.1.1 Broader Context​ 19
4.1.2 Prior Work/Solutions​ 20
4.1.3 Technical Complexity​ 20

4.2 Design Exploration​ 21
4.2.1 Design Decisions​ 21
4.2.2 Ideation​ 21
4.2.3 Decision-Making and Trade-Off​ 22

4.3 Final Design​ 22
4.3.1 Overview​ 22
4.3.2 Detailed Design and Visual(s)​ 23
4.3.3 Functionality​ 24
4.3.4 Areas of Challenge​ 24

4.4 Technology Considerations​ 25
5 Testing​ 25

5.1 Unit Testing​ 25
5.2 Interface Testing​ 26
5.3 Integration Testing​ 27
5.4 System Testing​ 28

5.5 Regression Testing​ 29
5.6 Acceptance Testing​ 29
5.7 User Testing​ 30
5.8 Compatibility Testing​ 30
5.9 Results​ 30

6 Implementation​ 31
6.1 Design Analysis​ 36

7 Ethics and Professional Responsibility​ 37
7.1 Areas of Professional Responsibility/Codes of Ethics​ 37
7.2 Four Principles​ 39
7.3 Virtues​ 40

8 Conclusions​ 43
8.1 Summary of Progress​ 43
8.2 Value Provided​ 43
8.3 Next Steps​ 43

9 References​ 44
10 Appendices​ 44

Appendix 1 – Operation Manual​ 4
Appendix 2 – alternative/initial version of design​ 50
Appendix 3 – Other considerations​ 51
Appendix 4 – Code​ 51
Appendix 5 – Team Contract​ 51

List of figures/tables/symbols/definitions

-​ Figure 1: The Gantt chart for our project.

-​ Figure 2: Milestones for the extent of our senior design project.

-​ Figure 3: Table of predicted lengths of tasks.

-​ Figure 4: Table with actual task lengths.

-​ Figure 5: Context table for our system.

-​ Figure 6: Pro and cons table for our system and alternatives

-​ Figure 7: Pros and cons table for using Base OpenGL/Vulkan and the Unity Engine.

-​ Figure 8: High-level overview of the Hybrid Relightable 3D Gaussian Rendering System.

-​ Figure 9: Comparison of the pre-optimized truth image (left) and the optimized Gaussian
model using the optimizer’s renderer(right) from a horse image set.

-​ Figure 10: Comparison of the pre-optimized truth image (left) extracted from a video and
the optimized Gaussian model using the optimizer’s renderer (right) for a gingerbread
house.

-​ Figure 11: Comparison of a single Gaussian scene(left) and a simple Gaussian intersection
scene (right) from testing.

-​ Figure 12: Performance comparison, in FPS, between a scene without a BVH (top) and one
with a BVH (bottom).

-​ Figure 13: Cornel Box with a single Gaussian

-​ Figure 14: A ray-traced image of the Stanford Dragon with no scene lighting and a solid color
unlit material.

-​ Figure 15: A cylinder and cube with their AABBs visible

-​ Figure 16: A modified Cornell Box scene with PBR materials

-​ Figure 17: A Gaussian model of a cat rendered alongside the Cornell box scene

-​ Figure 18: A generated point cloud of a horse statue using COLMAP. The red boxes represent
camera/picture locations.

-​ Figure 19: Areas of responsibility followed by the corresponding definition, then the ACM Code
of Ethics, and the Project Application

-​ Figure 20: Four ethics principles chart and how it applies to our project.

1 Introduction

1.1 PROBLEM STATEMENT

Creating realistic 3D models of real-world objects using 3D modeling software presents significant
challenges, including accurately replicating materials and topology. This process often requires tens
to hundreds of hours of work from highly skilled graphic designers. Our system will enable users to
generate realistic 3D Gaussian models directly from a video, seamlessly integrated into the Unity
Game Engine.

The technique of generating images of a scene from any perspective using only a video or a series of
photographs is known as novel view synthesis. Previously, this was done using Neural Radiance
Fields (NeRFs). This method has costly training and rendering times, can produce subpar results,
and cannot be combined with traditional polygon meshes.

Our solution is to create a novel view synthesis system using a new technique called 3D Gaussian
Splatting (3DGS). This solution is significantly faster and creates higher-quality renders than NeRFs,
but one lingering issue remains. Standard 3DGS models are not compatible with industry-standard
polygon meshes.

To solve these issues, we built off the work of Relightable Gaussians and created a ray-traced
rendering system that seamlessly integrates triangle and Gaussian models. This system will allow
users to change the scene's lighting in real-time, take advantage of global illumination features such
as reflections and shadows, and add traditional polygon meshes into the scene.

This system will be beneficial in various circumstances, including game development and 3D art, as
part of sales to allow customers to see an accurate and high-quality depiction of a product, and as
an improvement for current NeRFs or photogrammetry systems.

1.2 INTENDED USERS

We believe three primary personas accurately represent the individuals who will use our product:
“NeRF User,” “Non-Technical User,” and “3D Artist.”

The “NeRF User” persona actively performs novel view synthesis using existing technology such as
NeRFs. This user group comprises people familiar with 3D rendering technology and novel view
synthesis. “NeRF Users” seek better-performing view synthesis techniques to train and efficiently
generate high-quality renders to improve their workflow. Our solution appeals to this group because
of our system’s performance improvements over their current tools. It also offers new functionality,
allowing them to do what they already do faster and with a higher-quality end product.

The second persona, the “Non-Technical User,” wants to display a scene or an object but cannot due
to the technical knowledge barrier for current view synthesis models. For example, a
“Non-Technical User” may be a realtor who wants to allow potential home buyers to view a property
they have a video of as a 3D render, or they could be an owner of a furniture store wanting to
visualize their products for their customers better. This user group must easily create and display an
object or scene in three-dimensional space. Our product aims to be a user-friendly solution to novel
view synthesis to ensure an enjoyable user experience for technical and non-technical users, making
it incredibly appealing to “Non-Technical Users.”

The last user persona is the “3D Artist”. This person is the user who already has some knowledge of
3D rendering and is creating traditional triangle meshes using 3D modeling software such as
Blender, Cinema4D, or Maya. While this user will already know about 3D rendering, they may not
know of novel view synthesis. Currently, “3D artists” must recreate objects or scenes by hand, which
is incredibly time-consuming. These users seek new technologies to improve their workflow that
won’t inhibit current industry norms. To best accommodate this user group, we want our solution
to be easily integrated with existing 3D rendering technologies and tools and usable by individuals
without preexisting novel view synthesis knowledge. Our solution will directly appeal to this type of
user by allowing them to efficiently create models and scenes from videos rather than making them
by hand.

2 Requirements, Constraints, And Standards

2.1 REQUIREMENTS & CONSTRAINTS

2.1.1 Ubiquitous Functional Requirements

-​ The system shall input a Structure from Motion (SfM) point cloud for the Gaussian model
optimizer. Rationale: Gaussian optimizers are initialized from and require a point cloud
(constraint)

-​ The system shall take a Gaussian model, which is composed of position, opacity,
anisotropic covariance, and spherical harmonics, as input for the 3D Gaussian parser.
Rationale: These parameters are required to quantize Gaussians. (constraint)

-​ The system shall input a 3D Gaussian model for the Axis-Aligned Bounding Box (AABB)
Bounding Volume Hierarchy (BVH) generator. (constraint)

-​ The system shall take Unity mesh objects as input for the AABB BVH generator.
(constraint)

-​ The system shall take 3D Gaussian models with constructed AABBs, triangle meshes with
constructed AABBs, and camera parameters as input for the hybrid Gaussian and triangle
mesh ray tracer. Rationale: all data is required to accurately render a scene (constraint)

-​ The system shall take the final rendered texture from the hybrid Gaussian triangle mesh ray
tracer as input for the Unity Camera’s rendered texture. Rationale: We write to a texture
and blit it to the screen to override Unity’s default camera render pipeline. (constraint)

2.1.2 Event-Driven Functional Requirements

-​ When rendering the next frame, the system shall place all paths into the ended paths
buffer. Rationale: primary path generation operates on all ended paths.

-​ When the primary ray generation compute shader is called, and the ended paths buffer
contains paths, the system shall generate a new origin and ray direction to align the path
with its associated pixel for each path in the ended paths buffer. Rationale: Initialize all
paths to start at the camera’s origin and direction.

-​ When the determined path intersection is computed shader is called, and the ended paths
buffer contains paths. The system shall calculate ray intersections given the path direction.
If the path hits a Gaussian model or a triangle mesh, add the path to the continuing paths
buffer; otherwise, add the path to the ended paths buffer.

-​ When the lighting calculation computes the shader is called, and the continuing paths
buffer contains paths, the system shall determine how much light the surface absorbs at the
intersection point and calculate the reflection direction. If the path has reached its max
bound limit, don’t let it continue.

2.1.3 ​ State-Driven Functional Requirements

-​ Initial State: A video or series of images is used as input to the SfM point cloud generator.

-​ Intermediate State: SfM point cloud generator produces a sparse point cloud correlating to
object color and geometry. This is used as input to the Gaussian optimizer.

-​ Final State: Gaussians are initialized at point positions with default normals; PyTorch
Gaussian optimizer shall adjust the normals and other parameters to align with the lighting
environment.

2.1.4 Look & Feel Nonfunctional Requirements

-​ The system should be available as a package for the Unity Game Engine. It should be able
to be added to existing Unity projects and work with the existing tools provided by Unity.
Rationale: Using the built-in asset store framework greatly improves usability. (constraint)

2.1.5 Usability Nonfunctional Requirements

-​ The system should be easy to use with the tools and systems provided by the Unity engine
and integrate naturally with the rest of the system.

-​ The system should be intuitive and self-explanatory, so it's usable by someone without a
technical or graphics programming background.

2.1.6 Performance Nonfunctional Requirements

-​ The system should run in real-time. This means that the system should allow the user to
change the scene's lighting or the location of the camera's angle, and the system should
update the scene dynamically at 30 FPS (constraint)

-​ The system should produce high-quality renders that don’t appear fake to the user, i.e.,
renders don’t contain glaring visual artifacts like noise, shadow ripples, or erroneous
sampling.

2.1.7 Operational Nonfunctional Requirements

-​ The system should be available for download as a Unity package using Unity's package
manager. Rationale: Using the built-in asset store framework greatly improves usability.
(constraint)

2.2 ENGINEERING STANDARDS

Several key frameworks may apply when considering engineering standards for our project,
including IEEE/ISO/IEC 12207-2017, ISO/IEC 23053:2022, and ISO/IEC 23488:2022. First, standard
IEEE/ISO/IEC 12207-2017 outlines a comprehensive framework for software lifecycle processes,
detailing best practices for software development, maintenance, and management. This standard
ensures well-defined software processes, promoting consistency and quality throughout the
development lifecycle. Following this standard will help our team ensure that our project constantly
evolves and improves weekly.

We will integrate the IEEE/ISO/IEC 12207-2017 framework into our development process. This will
include establishing precise requirements, design, implementation, testing, and maintenance
throughout development. We will also conduct regular reviews and team updates via the agile
development process. This will ensure that we adhere to the standard through all stages of
development.

ISO/IEC 23053:2022 provides guidelines for assessing ML systems that use machine learning tactics,
focusing on their reliability and performance. As ML plays a vital role in many projects, following
this standard is crucial to ensure that the systems developed are effective and trustworthy. By
implementing the principles in this standard, our team can better evaluate the robustness of our
Gaussian point optimizer and our material prediction machine learning models; this will enhance
user confidence in our final deliverable.

To comply with standard ISO/IEC 23053:2022, we plan to develop a comprehensive evaluation for
our generated machine learning models, specifically the Gaussian point optimizer and the material
prediction models. When creating our evaluation framework, we will use performance metrics to
easily allow us to check the reliability and effectiveness of our models. We will perform these
metrics throughout the model’s development cycle.

Finally, ISO/IEC 23488:2022 focuses on representing objects and environments for image-based
rendering in virtual, mixed, and augmented reality (VR/AR). This standard provides clear rules for
capturing and showing the visual details of real and virtual objects, which helps create high-quality,
immersive experiences. By outlining a way to represent objects and environments, the standard will
help our team make the dynamic raytracer that acts as one of the center points of our project.
Following this standard will ensure our applications work well with current and upcoming software.
Using ISO/IEC 23488:2022 will help improve the visual quality of our virtual environments and also
help create more exciting and realistic interactions within our virtual environments.

We will remain consistent with the ISO/IEC 23488:2022 standard by incorporating the best
practices for rendering using our dynamic raytracer. This will include clearly defining our
techniques for object representation and ensuring that all objects are rendered as faithfully to their
original forms as possible. We will use the guidelines specified within the standard to help enhance
the visual quality of our environments and create realistic interaction between our light source and
rendered objects.

3 Project Plan

3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES

Our team is using an agile workflow with 2-week sprints. We chose agile because we used
progressive elaboration to develop our project plan further as we learned more about the
technologies and techniques used in Gaussian Splatting. Working in 2-week sprints allowed us to
make the most out of this process.

For communication and scheduling, we used Discord. We tracked tasks using the Gitlab issue
board, and using Git and branches allowed us to work collaboratively on the project. Finally, we
used our weekly reports to document our progress so our advisor (or anyone else) could follow our
work from the outside.

3.2 TASK DECOMPOSITION

Hybrid Gaussian Raytracer:

-​ Using PBR techniques and spherical harmonics, generate a render of composite scenes with
triangles and Gaussian models.

-​ Get Scene Data
-​ Get Unity camera parameters
-​ Emissive materials support
-​ Get triangle mesh objects in the scene

-​ Generate Axis-Aligned Bounding Boxes using surface area
heuristic.

-​ Get Gaussian objects in the scene
-​ Parse Gaussian splat ply files
-​ Generate Axis-Aligned Bounding Boxes by calculating and then

sorting the Morton codes for each Gaussian.
-​ Create a rendering pipeline.

-​ Create a command buffer containing all necessary rendering commands
and insert it in the camera’s rendering pipeline stage.

-​ Preprocess all path buffer information.
-​ Clear the current frame buffer
-​ Fill a path ends buffer with all of the paths
-​ Clear the paths and continue the buffer
-​ Clear the temporary paths and continue the buffer
-​ Fill the camera information buffer with the current

camera parameters
-​ Generate all primary rays for paths in the path ends buffer and

place them into the paths continue buffer
-​ Loop through all paths in the paths continue buffer, and

determine if there is an intersection. Add the intersection point to
a distance-sorted list of hits. Loop through this hit list after each
insertion until path transmittance reaches a minimum—cull
remaining intersections. If the path contains a hit, find hit payload
values by weighted average given material’s opacity, and add the

path to the temporary paths continue buffer; otherwise, add the
path to the paths end buffer.

-​ Loop through the temporary paths, continue buffer, and do
shading calculations. Place these paths back into the
(non-temporary) paths continue buffer.

-​ Repeat the intersection and shading code until paths have reached
their bounce limit.

-​ Accumulate the current frame buffer
-​ Increment the frame index

Machine Learning (ML) Models:

-​ Data Preparation
-​ Gather a dataset of well-known and standardized image sets for novel view

synthesis
-​ Divide the dataset into training, validation, and testing sets.

-​ Model Selection
-​ Select a suitable ML architecture (regression models using SGD).
-​ Define input-output mapping (input: images; output: .ply file for optimized point

cloud).
-​ Training the Model

-​ Choose an appropriate loss function (e.g., Mean Absolute Error for property
estimation).

-​ Set up the training configuration (optimizer, epochs).
-​ Train the model using the training dataset and validate using the validation set.

-​ Model Evaluation
-​ Evaluate the trained model on the testing dataset.
-​ Calculate performance metrics
-​ Review results and refine the model or input features if needed.

-​ Integration and Deployment
-​ Integrate the structure from motion and Gaussian optimizer models into the

rendering pipeline.
-​ Develop a file structure for the Unity package
-​ Optimize the model for speed and efficiency in real-time applications.

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Graphics / Raytracer Milestones

-​ Path tracer with triangle support
-​ The program should render a scene or object defined using traditional triangle

meshes using a path tracer.
-​ Performance should be at least 30 FPS
-​ Takes in Unity scene data

-​ Path tracer with material support
-​ The path tracer correctly renders triangles with materials and textures attached

instead of simple colors.
-​ Performance should be at least 30 FPS

-​ Path tracer with PBR properties
-​ Triangles should be rendered based on their physically based rendering properties.
-​ Performance should be at least 30 FPS

-​ Path tracer with basic Gaussian support
-​ The path tracer should now allow rays to intersect with one or multiple 3d

Gaussians to determine the color of a pixel.
-​ Performance should be at least 30 FPS
-​ The program should be able to read Gaussian data from a file.

-​ Path tracer with Gaussian support
-​ The path tracer should change the rendering of Gaussians based on the view

direction and their spherical harmonic coefficients.
-​ The color of the pixels when intersecting Gaussians should now be responsive to

changes in lighting.
-​ Performance should be at least 30 FPS.

Machine Learning Milestones

-​ Data Preparation and Feature Extraction
-​ Gather and process input video into image frames for Structure from Motion input
-​ Identify and extract the proper albedo, opacity, covariance, and spherical

harmonics.
-​ Deliverable: A cleaned dataset and a documented feature extraction method.

-​ Model Development and Training
-​ Select the ML architecture and define input-output mappings.
-​ Train the model using the training dataset and validate it with the validation set.
-​ Deliverable: A trained model(s) with validation results.

-​ Evaluation and Integration
-​ Evaluate the model on the testing dataset, refine it as needed, and integrate it into

the rendering pipeline.
-​ Develop an interface for inputting images and outputting .ply files with optimized

Gaussian models.
-​ Deliverable: A functioning model integrated into the pipeline, performance

metrics, and user interface.

3.4 PROJECT TIMELINE/SCHEDULE

Figure 1: The Gantt chart for our project

In summary, our project was broken into four different deliverables.

Our first deliverable was two demos we presented at our faculty review panel. One was the first
implementation of the path tracer, which supported triangles and could render them. This
deliverable encompassed all of the tasks in the Get Unity Data task group except for Generate Axis
Aligned Bounding Boxes, the Develop Command Buffer for pathtracer task, and the implement
ray-triangle implementation task. The other demo was a program that rendered 2D cross sections of
Gaussians.

The next deliverable was the full triangle path tracer with support for simple Gaussians. This
program rendered triangles efficiently using a bounding volume hierarchy with texture support and
supported both diffuse and emissive materials, rendered alongside a small number of simple
Gaussians. This deliverable encompassed all of the tasks in the Simple Gaussian Pathtracer group,
the generate Axis Aligned Bounding Boxes with the surface area heuristic task, and the Implement
reflection/scattering rays for triangles task.

The third deliverable is the full Hybrid Relightable Gaussian Pathtracer. In this deliverable, the
Pathtracer now renders scenes with triangles and Gaussians. Triangles are rendered using Physically
Based Rendering. The graphics side is also now integrated with the machine learning outputs and is
able to render Gaussian models created by our machine learning models. This deliverable
encompasses all of the Gaussian Machine Learning Model task group and all of the Relightable
Gaussian Pathtracer task group.

The final deliverable is to make our project available to others by matching the repository format to
the one expected by the Unity importer so that our project is available for others to use.

Milestone Completion Date

The program retrieves scene data from the
Unity scene and Gaussian files

11/15/24

Simple Pathtracer for triangles 11/27/24

Demo Gaussian Rendering 11/4/24

Structure from motion 2/24/25

Pathtracer for triangles and small numbers of
simple Gaussians

3/31/25

Pathtracer for triangles and Gaussians with
Physically-based Rendering for triangles.

4/30/25

Gaussian optimizer model 4/23/25

The project is available for Unity importing 5/2/25

Figure 2: Milestones for the extent of our senior design project.

3.5 RISKS AND RISK MANAGEMENT/MITIGATION

When developing a complex system that combines a Hybrid Gaussian Raytracer with machine
learning models for PBR property extraction, several risks can arise throughout the project lifecycle.
Identifying and managing these risks is crucial for ensuring successful outcomes and minimizing
disruptions.

One of the primary risks is the technical complexity of integrating the raytracing system with the
machine learning model. Differences between the data formats used in the rendering pipeline and
those required by the ML model could lead to compatibility issues. Early prototypes should be
developed to test the data interchange processes to mitigate this risk. Establishing clear interfaces
and using standardized formats can advocate for smoother integration. Continuous communication
between the teams working on the rendering engine and the machine learning components will
also help identify potential issues early.

The success of the machine learning model heavily relies on the quality and representativeness of
the training dataset. Risks include insufficient diversity in the point clouds, noise, and outliers that
could skew the model's performance. A rigorous data collection and preprocessing pipeline should
be implemented to manage this risk, including outlier detection and handling techniques. Regular
dataset validation against real-world scenarios will ensure it remains relevant and robust.

Finally, once integrated, the system must be optimized for performance in real-time applications.
Risks in this phase include performance degradation due to inefficient algorithms or inadequate
hardware resources. Regular profiling of the rendering pipeline and machine learning components
can help identify performance bottlenecks early. Additionally, incorporating optimization
techniques, such as reducing the complexity of algorithms and leveraging parallel processing, will
enhance the system's efficiency.

Our first step to mitigate the risks associated with integrating the two components of the system
was to make sure the graphics and machine learning teams were in communication. Later in the
project, we encountered an issue where the graphics team had adopted a different method of
storing Gaussians that the machine learning models output. This was solved by changing the parser
used by the graphics program to read in Gaussians to match the machine learning models' output.

To overcome the risk of bad data sets, we made sure that the datasets we used were well-known
pre-existing data sets that were known to be accurate and good for the purposes we wanted them
for.

In order to mitigate the risks of poor performance, we have used several performance tests to ensure
that our performance improvement methods, such as the use of bounding volume hierarchies, have
been effective. Notably, during the code review process for the implementation of the BVH, we
compared the performance of the same scene on the branch containing the BVH and one without;
this test demonstrated a substantial performance increase when using the BVH.

3.6 PERSONNEL EFFORT REQUIREMENTS

Predicted Task Time:

Task Person-Hours

Generate Axis-Aligned Bounding Boxes using
surface area heuristic.

6

Get triangle meshes in the scene 4

Get camera parameters 2

Get Lighting information 2

Develop a .ply file to store Basic Gaussians 6

Write a parser to read in a .ply file with
Gaussians

3

Expand .ply file and parser to store Gaussians 4

Develop a command buffer for the path tracer 10

Implement ray-triangle intersection 8

Implement the ray-basic Gaussian intersection 10

Train the model to determine normal vectors
from Basic Gaussians

24

Research machine learning techniques 20

Gather training datasets 10

Train the model to determine PBR properties for
Gaussians

36

Implement real-time camera movement 10

Implement reflection/scattering rays for
triangles

16

Implement reflection/scattering rays for
Gaussians

16

Implement real-time lighting manipulation 10

Research and develop a PoC for running Pytorch
inside Unity

20

Create a Unity package for the system 10

Add Physically-based Rendering to Pathtracer 24

Apply PBR to triangles 12

Apply PBR to Gaussians 12

Refine Pathtracer and model 24

Figure 3: Table of predicted lengths of tasks

Actual Task Time:

Task Person-Hours

Generate Axis-Aligned Bounding Boxes using
surface area heuristic.

6

Get triangle meshes in the scene 4

Get camera parameters 2

Get Lighting information 2

Develop a .ply file to store Basic Gaussians 6

Write a parser to read in a .ply file with
Gaussians

3

Expand .ply file and parser to store Gaussians 4

Develop a command buffer for the path tracer 10

Implement ray-triangle intersection 8

Implement the ray-basic Gaussian intersection 10

Train the model to determine normal vectors
from Basic Gaussians

24

Research machine learning techniques 20

Gather training datasets 10

Train the model to determine PBR properties for
Gaussians

36

Implement real-time camera movement 10

Implement reflection/scattering rays for
triangles

16

Implement reflection/scattering rays for
Gaussians

16

Implement real-time lighting manipulation 10

Research and develop a PoC for running PyTorch
inside Unity

20

Create a Unity package for the system 10

Add Physically-based Rendering to Path tracer 24

Apply PBR to triangles 12

Apply PBR to Gaussians 12

Refine Pathtracer and model 24

Figure 4: Table with actual task lengths

3.7 OTHER RESOURCE REQUIREMENTS

It is crucial to secure adequate computational power to successfully develop and deploy our hybrid
Gaussian raytracer and machine learning models. The rendering engine and machine learning
components are resource-intensive, requiring significant processing capabilities to efficiently
handle complex calculations and large datasets. The rendering engine supports real-time
performance and processing high-quality graphics, which demands powerful GPUs and ample
memory.

Simultaneously, machine learning models require robust computational resources for training and
inference, mainly when dealing with extensive datasets of point clouds. To mitigate potential
performance bottlenecks, we investigated high-performance computing infrastructure that
seamlessly supports both the rendering tasks and the machine learning processes, ensuring that the
overall system operates efficiently and meets project timelines.

Given the nature of our project, an average desktop computer meets our computational needs. The
hybrid Gaussian raytracer and the machine learning models can be efficiently run on standard
hardware to optimize resource usage. While our system processes point clouds and renders complex
scenes, the operations involved are manageable within the capabilities of a typical consumer-grade
machine. Therefore, we don’t require high-end computing resources, making the project accessible
and cost-effective. This allowed us to focus on development without needing specialized or
expensive hardware.

4 Design

4.1 DESIGN CONTEXT

4.1.1 Broader Context

Our project impacts the art sector of the public sphere, as our project generates realistic 3D models
from videos. In particular, the communities affected are 3D modelers who create physically based
models and textures, as well as Unity users who would be interested in creating their own 3D
Gaussian models.

Area Description Examples
Public health,
safety, and
welfare

It should require the user to be behind
the screen less.

It should increase the speed and
quality of creating custom 3D
objects.

Global, cultural,
and social

This project reflects the hard work and
the magic of working together as a team.

The use of this product should elate
the user and inspire them to create
products that can help others.

Environmental Increased electrical usage ML and Ray Tracing are
computationally expensive. This
means higher wattage usage.

Economic Increased output in the custom 3D
modeling market. Potentially helping fuel
online 3D printing companies.

The user could desire to scan
themselves and then print a
full-scale version to help make
custom props.

Figure 5: Context table for our system

4.1.2 Prior Work/Solutions

There are other similar Gaussian ray tracer products out there. They do the same steps of
generating a 3D Gaussian model using Structure-from-Motion and Stochastic Gradient Descent.
They build their own render pipeline that either uses rasterization or point-based ray tracing to
render these 3D Gaussian models. What makes ours unique is that it incorporates Unity to create a
hybrid scene of Gaussian and triangle meshes. This allows for unique and creative scenes. We
generate Gaussians in the same way, but we then use Unity as a base to author scenes and game
engine logic. Our hybrid renderer overrides the basic Unity rendering pipeline and is capable of
rendering both triangle meshes and Gaussian models. Unity is capable of handling a diverse set of
3D file formats, which allows easy drag and drop of traditional polygon models.

 Our Project Relightable Gaussian Ray
Tracing

Pros -​ Generates 3D Gaussian models from
video

-​ Renders both Gaussians and 3D meshes
-​ Unity Compatible

-​ Generates 3D
Gaussian models from
video

-​ Relightable Gaussians

Cons -​ Gaussian optimization can only run on
NVIDIA graphics cards

-​ The quality of the Gaussian model is
lower

-​ Requires NVIDIA
graphics cards

-​ Does not implement
triangle meshes

-​ It’s not Unity
compatible

Figure 6: Pro and cons table for our system and alternatives

B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, “3D Gaussian Splatting for Real-Time
Radiance Field Rendering,” ACM Transactions on Graphics, vol. 42, no. 4, Jul. 4AD, [Online].
Available: https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

Gao, J., et al. "Relightable 3D Gaussian: Real-time Point Cloud Relighting with BRDF Decomposition
and Ray Tracing," in arXiv:2311.16043, 2023.

Nicolas Moenne-Loccoz, undefined., et al. "3D Gaussian Ray Tracing: Fast Tracing of Particle
Scenes," in ACM Transactions on Graphics and SIGGRAPH Asia, 2024.

4.1.3 Technical Complexity
Our design consists of 13 integrated components, illustrated in Figure 8 (section 4.3.2). The core
elements of the project are a Gaussian ray tracer and a PyTorch-based optimization model, both of
which are utilized from within the Unity environment. This integration allows us to take advantage

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

of Unity's rendering pipeline and user interface, making the system accessible to developers familiar
with Unity.

The ray tracer component requires a deep understanding of modern graphics rendering techniques,
including linear algebra, light interaction, and 3D worldspace design. Specifically, the
Gaussian-based rendering system involves handling a collection of 3D Gaussian primitives and
modeling how their spatial and visual properties contribute to the final image. This is a technically
demanding task that diverges from traditional rasterization and ray tracing based on triangle
meshes.

The PyTorch optimizer is responsible for refining the parameters of the Gaussian point cloud. These
parameters, such as position, opacity, covariance, and spherical harmonics, are optimized based on
a comparison between rendered images and ground-truth input images. This process is repeated
each time a new video or image set is provided, enabling dynamic scene reconstruction and
optimization.

Our system introduces a hybrid rendering approach by combining Gaussian splats with traditional
triangle meshes, which adds a layer of complexity and distinguishes our method from current
standards in real-time rendering. The project's performance targets included achieving a runtime
frame rate of 30 FPS and completing the full optimization pipeline in under one hour, making the
system both visually performant and time-efficient.

4.2 DESIGN EXPLORATION

4.2.1 Design Decisions

We chose to use the Unity engine as the framework for our system. This reduced game engine logic
overhead and build complexity for us in running compute shaders and provided a clear path for the
packaging and distribution of our system. Using Unity also provides a sense of familiarity for our
users as it is one of the largest game engine platforms in the world.

We chose to use a ray tracer in place of Gaussian Rasterization. Some implementations of 3D
Gaussian Splatting render their models using rasterization; however, rasterization necessitates ad
hoc and inaccurate lighting effect implementations. Because of this, we decided to use a ray tracer,
which allows us to have physically accurate control over the lighting and more easily render a
hybrid scene containing multiple primitive types.

We chose to target 30 frames per second (FPS). We made this decision because 30 FPS is what is
considered to be “real-time” performance.

We did choose to de-scope our project due to time constraints. The feature we decided to remove
from our project was the material prediction properties from the optimizer.

4.2.2 Ideation

One of the first choices we made was to use Unity Engine. To make this decision, we discussed
alternatives such as using C++ and OpenGL or Vulkan to dispatch our compute shaders. These
options require a more complex build pipeline and would make much of our implementation
platform dependent. Using the Unity engine abstracts many issues and frees us to focus on other
system elements.

4.2.3 Decision-Making and Trade-Off

 Pros Cons

Base OpenGL / Vulkan No existing render pipeline

It is complicated to build and
display output.
Different platforms will have
different compatibility

Unity Engine Integration with an already
existing tool
Built-in systems for dispatching
Compute Shaders
Unity engine provides solutions
for cross-platform compatibility

Our system ignores the existing
render pipeline

Figure 7: Pros and cons table for using Base OpenGL/Vulkan and the Unity Engine.

We decided to create our project within the Unity engine; this gave us the benefit of not having to
set up our window to display the output, implement our update loop, or handle cross-platform
building for low-level code. This decision saved us much time and effort on problems outside our
project's core purpose.

The downside of this decision is that Unity has a built-in render pipeline, which our solution does
not use, so there is a performance cost to using Unity, but we decided the benefits outweigh the
cost.

4.3 FINAL DESIGN

4.3.1 Overview

The Hybrid Relightable 3D Gaussian Rendering System is a real-time novel view synthesis tool that
leverages advanced machine learning techniques, 3D geometry processing, and optimized rendering
methods to create high-quality, interactive 3D scenes. The system is designed to work with
image-based data (such as video or image sequences) and polygonal models, seamlessly integrating
them into a unified rendering pipeline.

The process begins by capturing a video input and extracting frames to splice into a sequence of
images, which are then processed using Structure from Motion (SfM) techniques. This process
generates point clouds—collections of 3D points representing the scene's structure. From these
point clouds, the system creates Gaussian splats, simplified representations of the scene’s geometry,
with each point in the cloud representing a Gaussian distribution in 3D space.

Next, the generated Gaussian points are fed into a PyTorch-based optimizer. This optimizer utilizes
machine learning techniques to refine the positions and properties of the points. Additionally, it
creates extra attributes crucial for accurate rendering and details. This optimization ensures the
final 3D scene is visually realistic and computationally efficient.

The output from the optimizer and its model is then passed through a parser that prepares the data
for rendering. This includes creating a Bounding Volume Hierarchy (BVH), a hierarchical structure
that accelerates the ray tracing process by organizing the 3D objects in the scene for more efficient
intersection tests. For scenes requiring more detailed geometry, users can integrate polygonal
meshes (triangle meshes), which are also processed into their own BVH structures, enabling them
to coexist and be rendered alongside the Gaussian splats.

The core of the system’s rendering capability lies in its ray tracer. This component takes the BVH
data (whether Gaussian or triangle mesh-based). It combines it with the Unity camera to calculate
how light interacts within the scene, ultimately producing realistic images. At path intersection
points, each hit is inserted into a sorted list of intersections. Post insertion, we loop through the
sorted hits list, keeping track of the paths' transmittance as it passes through translucent materials.
Once the path’s transmittance value reaches a minimum value, we cull the remaining list and
consider that the point of intersection. The ray tracing process accounts for various optical effects,
such as shadows, reflections, and global illumination, ensuring the final output is both physically
accurate and visually compelling.

4.3.2 Detailed Design and Visual(s)

Figure 8: High-level overview of the Hybrid Relightable 3D Gaussian Rendering System.

As the overview explains, our solution consists of a pipeline that takes in images or videos and
ultimately outputs a rendered scene. Our system consists of multiple components along this
pipeline that modify the data.

1.​ The first component of the solution is a structure from the motion solution, which creates
a cloud of Gaussians from a series of images or images extracted from videos.

a.​ This solution was implemented and requires the user to upload their video to a
specific directory, from there the program uses it to create a ply file of a point
cloud.

2.​ The second component is a machine learning model that uses the point cloud as input and
converts the point cloud into a Gaussian model.

a.​ These Gaussians are then outputted to another ply file so they can be read in and
used by the ray tracer.

3.​ The final component is the raytracer itself. The raytracer should take in the Gaussian
output by the machine learning model and any traditional polygon meshes and render
them together in a 3D scene.

a.​ The raytracer should allow the user to configure the camera's position and lighting
by editing the Unity scene or other methods.

b.​ For performance reasons, the raytracer should construct a bounding volume
hierarchy to accelerate calculating the ray intersections.

c.​ The output of the raytracer should be in real-time (30 FPS) and allow the user to
update the lighting and camera positions while running.

4.3.3 Functionality

The System is designed to operate seamlessly within a user’s workflow, enabling real-time 3D scene
reconstruction and rendering. To start, a user will interact with the system through a Unity package,
which serves as the interface for input and output. Depending on their needs, the user can upload a
video/video-derived image set or a polygon mesh into the Unity package.

Suppose the input is a video or a set of images. In that case, the system will first extract the 3D
geometry using Structure from Motion (SfM), then generate a point cloud for further optimization.
This point cloud will then be processed through a PyTorch-based optimizer, which refines the
points and transforms them into Gaussians. The system then constructs a Bounding Volume
Hierarchy (BVH) to organize the scene for efficient ray tracing and rendering. This optimized scene,
which includes the optimized Gaussian model, is ready to be rendered with our custom Unity
Render Pipeline, ensuring that the lighting and materials are accurately simulated in real time.

If the user uploads a polygon mesh, the system similarly processes the geometry through BVH
construction without the SfM step. The polygon mesh will be integrated into the scene alongside
the 3D Gaussian splats, with ray tracing performed on both geometry types for optimal
performance.

Once the scene is rendered, the user can interact with the final output directly within Unity or
export the rendered scene for use in various applications. The system provides flexibility, allowing
users to apply the rendered 3D scenes to their specific use cases, whether for simulations,
visualizations, or immersive experiences.

4.3.4 Areas of Challenge

The ML problems we ran into did take longer to solve than originally hoped for, which caused time
setbacks that caused us to descope some additional Gaussian parameters, including material
prediction and normal direction. There were the everyday issues of communication and finding
time to meet with one another to ensure constant, consistent progress in the project.

We solved these problems by discussing them as a group and trying to solve them. From there, we
learned what we didn’t know to create new-to-us solutions that fit our problems. We were
transparent in communicating with each other about issues we didn’t know how to solve, or giving
notice when we wouldn't be able to come to the meeting.

4.4 TECHNOLOGY CONSIDERATIONS

A major trade-off of our project is that the user must have an NVIDIA graphics card to run our
program. This requirement limits who can use our program, but the trade-off is that the custom 3D
models should be of higher quality due to the ML optimizer that is generating more data from the
image than simply just the Gaussian points. This should be an overall strength to our project, as it is
likely that whoever is interested in using our program would already meet this requirement.
Another major trade-off is the design choice to make this a Unity project vs other options. This
should again be a strength of the project, as Unity is a very common game engine used by many
people.

5 Testing
Our testing approach prioritized early and iterative integration testing to ensure all system
components aligned with the design requirements. Due to the modular structure of our project,
particular attention was given to maintaining consistency in inputs and outputs across modules.
This strategy helped ensure seamless integration between subsystems. The following sections
describe the methods and tools we used to achieve this.

5.1 UNIT TESTING

Our machine learning unit tests involve comparing a baseline image with a newly generated image
from our code. We perform a pixel-by-pixel comparison, allowing for a small margin of error. To
facilitate testing, we developed custom visualizers to compare and inspect the images more
effectively. These visual tools not only streamlined the debugging process but also helped us quickly
identify discrepancies and verify the correctness of our image generation pipeline. This approach
ensured the robustness and consistency of our machine learning outputs throughout development.

Figure 9: Comparison of the pre-optimized truth image (left) and the optimized Gaussian model using
the optimizer’s renderer(right) from a horse image set.

Figure 10: Comparison of the pre-optimized truth image (left) extracted from a video and the
optimized Gaussian model using the optimizer’s renderer (right) for a gingerbread house.

For graphics unit testing, the team initiated testing after the completion of the Gaussian Unity
parser. Initial efforts focused on rendering a single Gaussian to validate the core rendering pipeline
and ensure accurate visual representation. Once this baseline functionality was confirmed, we
progressed to more complex scenes involving multiple Gaussians and their intersections. These
tests allowed us to verify spatial accuracy, depth handling, and visual consistency within the Unity
rendering engine. This step-by-step approach ensured a reliable foundation before integrating more
advanced graphical features.

Figure 11: Comparison of a single Gaussian scene(left) and a simple Gaussian intersection scene (right)
from testing.

5.2 INTERFACE TESTING

Our project has relatively few custom interfaces due to its deep integration with Unity. As a result,
we focused on leveraging Unity's built-in interfaces to communicate program status. Specifically, we
utilized Unity's output logs to provide users with updates on the program's progress. This approach

allowed us to maintain a streamlined design while still offering transparency and useful feedback
during execution.

5.3 INTEGRATION TESTING

The modular nature of our project necessitated a strong emphasis on integration between
components. Once the initial development of each module was complete, we created a control
script to manage the flow of inputs, outputs, and the sequential execution of these modules. Our
integration testing centered around the PythonScriptRunner.py, which orchestrates the entire
pipeline: it first executes the video-to-image script, then selects the appropriate output directory
and runs the Structure-from-Motion (SfM) script to generate a point cloud. This point cloud is then
passed into the optimizer, which produces the final model for rendering.

This integration testing process was critical in identifying discrepancies between input and output
paths, as well as inconsistencies in data formatting. It played a key role in ensuring seamless
coordination between modules and significantly streamlined the development process.

Figure 12: Performance comparison, in FPS, between a scene without a BVH (top) and one with a BVH
(bottom).

5.4 SYSTEM TESTING

System-level testing in our project combines unit, interface, and integration tests to validate the
end-to-end functionality of the system. A typical test involves rendering a complex scene composed
of a Gaussian splat model, which is generated from Structure-from-Motion (SfM) and machine
learning models, as well as traditional polygon meshes. The final rendered output is verified for
both visual accuracy and performance. Key requirements tested include rendering speed and image
quality. We used Unity Editor’s Play Mode Tests along with performance benchmarking tools to
automate and streamline this process.

Although the project is modular in design, it follows a mostly linear processing structure. This
design is beneficial because it allows the workflow to begin with a video or image set as input. Once
Play Mode is entered in Unity, the program automatically processes the input through each module.
After processing, the final scene is rendered in Unity, where it can be observed and evaluated for
output quality.

Figure 13: Cornel Box with a single Gaussian

5.5 REGRESSION TESTING

Our project does not require a traditional regression testing suite, as the package operates relatively
independently from the Unity environment. The machine learning component mainly consists of
standalone scripts linked together through a script runner. As such, the primary focus of regression
testing is to ensure that the Python script runner remains compatible with new Unity scenes.
Additionally, we need to verify that changes to Unity do not negatively affect the renderer, which,
given the design, should not be an issue.

5.6 ACCEPTANCE TESTING

We ensure that design requirements are validated through continuous communication with the
machine learning team, the graphics team, and the professor overseeing our work. Demonstrations
involved running test scenes with predefined criteria, such as a basic Gaussian intersection scene.

As this is a student-proposed project, the acceptance testing was conducted by us, the developers.
While this was advantageous in that we had a clear understanding of what was possible and what
the final product should look like, it also presented a challenge. Our deep familiarity with the
project made it difficult to assess the work objectively. Given more time, we would have benefited
from testing with impartial users to gain more objective feedback on the final product.

5.7 USER TESTING

Testing user needs for our project is straightforward, as the primary objectives were
performance-based. For instance, we aimed to process the Structure-from-Motion (SfM) and
optimization tasks in under one hour. Testing this requirement is simple: we run the program, and
if it completes within the specified time frame, the test passes. If the processing time exceeds the
target, we revisit our performance optimization techniques.

Similarly, for graphics testing, performance is verified by monitoring the frame rate during the
rendering of the Gaussian models. Our goal was to achieve a minimum of 30 frames per second,
which has been successfully met on most systems. The frame rate typically ranges from 30 to 200
frames per second, depending on the hardware specifications.

5.8 COMPATIBILITY TESTING

Since our project involves optimization tasks of non-trivial size, we leveraged CUDA support where
possible to accelerate performance. Many components are compatible with both GPU and CPU
processing, but by default, we prioritize GPU execution using CUDA for optimal speed. In cases
where GPU memory is insufficient, particularly during the Structure-from-Motion (SfM) stage, we
automatically fall back to multithreaded CPU processing to ensure continued functionality and
stability.

5.9 RESULTS

Our testing efforts played a critical role in both development and validation. Integration tests were
especially helpful in identifying mismatches between module inputs and outputs early in the
development cycle, allowing us to address issues before full system assembly. In parallel,
performance testing provided valuable insights into how well the system met our efficiency goals.

Given the computationally intensive and graphics-heavy nature of our project, performance was a
primary concern. We prioritized smooth rendering and reasonable processing times to ensure
usability. Our results indicate that the system performs in line with our expectations.

We successfully achieved our goal of a minimum of 30 frames per second during Gaussian model
rendering, even on mid-range hardware. On high-end systems, frame rates typically ranged between
30 and 200 frames per second, depending on model complexity and scene content. Processing time
for the full pipeline—including video-to-image conversion, Structure-from-Motion, and
optimization—averaged around one hour on our best available hardware. This aligns with our
target of completing processing within an hour for average scenes. While more complex models or
less capable hardware resulted in slightly longer runtimes, the system consistently stayed within an
acceptable range.

Overall, our results validate that the project meets its primary requirements for performance and
responsiveness. With further optimization and hardware tuning, even greater efficiency could be
achieved.

6 Implementation
Our team's development was split into two primary groups: the computer graphics and Machine
Learning groups. This was done to efficiently develop the independent core components of our
system in parallel. The graphics team is responsible for developing the hybrid ray tracing rendering
solution in the Unity game engine, and the ML team is tasked with generating a point cloud given a
series of real-world input images or video using Structure from Motion (SfM), which will then be
given to a machine learning model to create and optimize a Gaussian point cloud.

During the first semester, the graphics team primarily focused on creating the foundations for our
hybrid rendering solution. This consisted of overriding Unity’s rendering pipeline with our own
custom one. The Unity scripting API allows you to define new command buffers, a series of
commands you wish the GPU to execute, during a specific Unity rendering loop phase. The general
architecture of our hybrid renderer inserts itself at the end of everything,
`CameraEvent.AfterEverything`. There, it overrides the image Unity’s universal rendering pipeline
generated with a new ray-traced image. To create the ray-traced image, a ray is generated for each
pixel, originating from the camera’s origin and passing through the center of the pixel. For each
generated ray, we determine if it collides with anything in the scene. If a ray collides with an object,
it performs a series of lighting calculations depending on material properties, incident direction,
and incoming light direction. After this lighting calculation, we reflect this ray off the object’s
surface and continue tracing it through the scene. Once all rays have reached some arbitrary bounce
limit, the image has finished rendering.

Figure 14: A ray-traced image of the Stanford Dragon with no scene lighting and a solid color unlit
material.

For simplicity, the graphics team focused primarily on triangle mesh integration before Gaussian
model integration due to the abundant resources on the former. This allows us to guarantee the
accuracy of our physically based lighting calculations before adding in the additional layer of
complexity of non-traditional models. The graphics team’s end-of-semester one deliverable
consisted of a traditional pinhole camera that can render triangle mesh objects with emissive
materials, serves as our scene's light source, and Lambertian diffuse materials, the most basic
physically based material.

Even with the parallelized nature of performing these calculations via compute shaders, checking
for ray intersections for every triangle in the scene is extremely costly. To sidestep this issue, we use
bounding volume hierarchies, an industry-standard solution to this issue, to drastically increase the
performance of our ray tracer. A ray will only consider triangles that lie within a volume. Thus, we
can create a structure of embedded volumes or bounding boxes, where we recursively check for ray
collisions against these bounding boxes.

Figure 15: A cylinder and cube with their AABBs visible

This semester, the computer graphics team focused on finishing a diffuse triangle mesh path tracer,
physically based materials, and hybrid, multi-intersection Gaussian primitive rendering support.
The ray tracer is now capable of determining the reflection direction of the ray at intersection
points using cosine-weighted, for diffuse materials, or GGX, for PBR materials, importance
sampling. Rendered frames are accumulated in an accumulation buffer, meaning that, over time,
the output image will reach its appropriate color using Monte Carlo integration.

Figure 16: A modified Cornell Box scene with PBR materials.

The other major focus of the graphics team this semester was rendering Gaussians. This was a core
component of our project and presented several challenges. The first step we took was to set up a
simple ray-gaussian intersection. These scenes had rays intersect with a small number of gaussians;
we couldn’t do a large number of gaussians yet for performance reasons, and could derive pixel color
based on the albedo of the gaussian and the calculated opacity at the point.

In order to improve this simple intersection, we needed to take two steps. The first step was to take
in multiple intersections and sort them to calculate the color of a pixel within which the ray passes
through many gaussians. The next major component we accomplished was to create a bounding
volume hierarchy for Gaussians. Without a BVH, if we had more than a couple of dozen Gaussians,
our program would crash, and the models we were hoping to render contained multiple tens of
thousands of Gaussians.

To create the BVH for Gaussians, we followed the algorithm used in J. Gao et al, which constructs a
BVH in four steps. The first was to calculate the Morton code of every Gaussian. A Morton code is a
way of compressing the three-dimensional coordinates into a single number. The next step is to sort
the Gaussians in ascending order of the Morton code. The next two steps involved constructing the
bounding boxes. First, we built a bounding box for each Gaussian, and then we recursively created
bounding boxes that encompassed each two adjacent bounding boxes in the layer below. An
important modification we made to the algorithm from the paper was that we implemented it on
the CPU instead of the GPU; because of this, we had to multithread the AABB construction in order
to ensure it performed well. Once the BVH was implemented, we were able to render full Gaussian
models with acceptable performance.

The final element of focus for Gaussians was to implement spherical harmonics. Gaussian models
encode color using spherical harmonics because they allow for view-dependent color to be
efficiently encoded. We modified our intersection script to calculate the ponderated sum of the
spherical harmonics equations for each color channel and used this color in place of the albedo
going forward.

Combining the implementation of Gaussians with physically based rendering completed the
graphics portion of the system and allowed the system to render high-quality Gaussian and
traditional polygon models.

Figure 17: A Gaussian model of a guitar rendered alongside the Cornell box scene

The primary focus of the ML team in the first semester was to generate a 3D point cloud from a
sequence of scene images using the Structure-from-Motion (SfM) computer vision method. To
accomplish this, we used the open-source program COLMAP along with its Python interface,
PyCOLMAP. We tested our dataset with COLMAP to verify that the generated point clouds met our
quality requirements and were compatible with the design of our Gaussian Optimizer.

Figure 18: A generated point cloud of a horse statue using COLMAP. The red boxes represent
camera/picture locations.

The generated point clouds serve as input to our optimizer model, which converts them into
Gaussian point clouds by optimizing parameters such as position, opacity, covariance, and spherical
harmonics. The optimization process involves rendering images from the Gaussian representation
using the same camera parameters as the original dataset, comparing them to the ground-truth
images, and iteratively refining the Gaussian parameters to minimize visual discrepancies. This
results in an optimized Gaussian point cloud that closely matches the visual appearance of the
original scene.

Our team additionally focused our efforts on ensuring that our Unity package is available to be
imported into any standard Unity project. While we were not able to upload it into the asset store
due to time constraints and, additionally, due to the inclusion of third-party Python
scripts/libraries, we were still able to refine the package to the point where a user can import it
using a GitHub link and the Unity package manager. The instructions for importing our package are
included in the README for the repository.

6.1 DESIGN ANALYSIS

Our design was ambitious and paved a new feature for Gaussian ray tracers, that being the hybrid
element of our project. The optimizer correctly extracts data from video scenes and successfully
passes it off to the ray tracer. The ray tracer, in turn, successfully outputs a hybrid scene of triangle
meshes and Gaussians rendered inside the Unity pipeline. There are a lot of moving parts to our
project, and they all successfully came together to form a functional project.

There are many ways for our project to be improved. These include improving the quality of
Gaussian models, the speed of rendering, and implementing a material predictor. We
underestimated the time needed to implement the original features we sought to implement and
had to de-scope the project due to time constraints. The feature we removed was the relightability
of the Gaussians. We unfortunately had to remove this from our scope due to time constraints.
Additionally, we wanted to be able to add new lighting in scenes and have it accurately display the
new light on the Gaussians. By cutting these features, our package, rather than extracting lighting
information for the Gaussian models, simply uses the light that is in the original video used to
generate the Gaussian. It is worth noting that triangle meshes are relightable.

7 Ethics and Professional Responsibility

7.1 AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS

Area of
Responsibility

Definition ACM Code of Ethics and Project Application

Work Competence Provide work demonstrating
excellence, high integrity,
punctuality, and professional
competence.

2.6 Perform work only in areas of competence.

Our project involves advanced topics such as GPU
graphics programming, the Unity engine, and
machine learning models using Pytorch. Ensuring
work competence, continuous learning, and
practice from all team members is ongoing.

Financial
Responsibility

Provide products at a
reasonable cost in
comparison to the quality of
the product available.

1.3 Be honest and trustworthy

Due to our plan to create a Unity package and
project circumstances, our product will be free to
use.

Communication
honesty

Report work understandably
and truthfully in such a way
as to avoid deception.

1.3 Be honest and trustworthy

To ensure communication honesty, as a team, we
meet each Monday to discuss achievements and
create a weekly report that is reviewed by each
individual to ensure no deceptions are reported.

Health, Safety,
Well-being

Minimize risks to
individuals' safety,
well-being, and health by
adhering to safety standards
and actively addressing
hazards.

1.2 Avoid Harm

We plan to integrate industry standards like
traditional Polygon meshes into our renderer to
avoid harm to potential jobs and job states of
current 3D artists.

Property
Ownership

Respect the property and
ideas of others by
recognizing their rights and
avoiding unauthorized use
or infringement.

1.5 Respect the work required to produce new
ideas, inventions, creative works, and
computing artifacts.

For our project, we plan to credit all papers,
libraries, including the SfM COLMAP library, and
additional resources used to create our final
project.

Sustainability Protect the environment
both on a local and global
scale through ethical
practices and by avoiding
overconsumption.

1.2 Avoid Harm

We understand that machine learning models and
computer graphics can be computationally
expensive and require lots of energy, so to alleviate
this issue, we plan to include BVH into our
renderer, among other optimization techniques,
to limit rigorous computations and energy usage.

Social
Responsibility

Create a product that
contributes positively to
society by addressing key
needs, improving quality of
life, and promoting overall
well-being.

1.1 Contribute to society and to human
well-being, acknowledging that all people are
stakeholders in computing.

Our system will directly benefit our users and
stakeholders by offering a faster, higher-quality,
more flexible solution to the current industry
standard for Novel View Synthesis

Figure 19: Areas of responsibility followed by the corresponding definition, then the ACM Code of
Ethics, and the Project Application

Our team is performing exceptionally well in the area of work competence. This is crucial in our
project, which involves complex and advanced topics like GPU graphics programming, the Unity
engine, and machine learning models using PyTorch. We demonstrate excellence by ensuring every
team member continuously learns and hones their skills. This commitment to ongoing education,
whether through self-study, peer learning, or practical application, allows us to provide
high-quality, professional work. Each member is encouraged to work within their areas of
competence, which results in timely, accurate, and impactful contributions to the project.
Individual areas of competence were determined during our first few team meetings, personal
interests, and previous skills/experience. Our dedication to maintaining high integrity and
punctuality in delivering tasks ensures that we consistently meet our objectives and deadlines.

While we perform well in work competence, we recognize the need for improvement in
communication and honesty. We hold weekly meetings to discuss our progress and generate a
report that each team member reviews to ensure transparency. However, there have been occasions
where the clarity and thoroughness of our task documentation could be improved. To fix this, we
implemented more rigorous task documentation practices to enhance communication honesty. This
helped us ensure that each task was thoroughly documented with clear progress updates,
challenges, and solutions. By doing so, we avoided any potential misunderstandings or
misrepresentations of our work, ensuring that all reports are truthful and understandable. For
example, during the final sprint of our project, we would send daily updates to each other that
explained what we accomplished that day, any setbacks or problems we encountered, and how
much we were following our preplanned timeline. This improvement helped strengthen our team's
ability to report progress transparently and accurately.

Our ethical standards have remained the same since last semester, as the foundation of our project
has not altered greatly from our original plan from the previous semester. Since no new
functionalities or changes were introduced to our project, our original ACM Code of Ethics
continues to be a guide we can follow.

7.2 FOUR PRINCIPLES

 Beneficence Nonmaleficence Respect for
Autonomy

Justice

Public health,
safety, and
welfare

Our system will
directly benefit our
users and
stakeholders by
offering a faster,
higher-quality,
more flexible
solution to the
current industry
standard for Novel
View Synthesis

Our system does directly
or indirectly harm our
stakeholders and users

After creating a
minimum viable
product, we plan
to send out
prototypes to
stakeholders and
receive user
feedback before
the system is
finalized

Our system will be
neatly contained in a
Unity Package and
will be freely
available to
download on the
Unity Asset Store

Figure 20: Four ethics principles chart and how it applies to our project.

The benefit we are working towards is a faster, higher-quality, and more flexible solution for Novel
View Synthesis, which will directly enhance user experiences. We aim to deliver faster results
without compromising quality by leveraging advanced algorithms and optimizing computational
efficiency. Additionally, we incorporated adaptive features that allow users to customize the solution
to their specific needs, ensuring greater flexibility. We continuously tested the system with
real-world data to ensure success and refine our models based on iterative improvements.

One broader context-principle pair in which our project may be lacking is the potential impact on
3D artists' job security due to automation and advanced tools. While our system supports
industry-standard tooling and enhances efficiency, this could inadvertently raise concerns about job
displacement in the 3D artist community.

To overcome this, we focus on the positive aspects of the design, which empower 3D artists rather
than replace them. By integrating industry-standard tools, including traditional polygon meshes
and our Gaussians, we enable artists to leverage automation to reduce repetitive tasks, allowing
them to focus on more creative and complex aspects of their work.

Global,
cultural,
and social

Our system is
advancing the
research of the
computer graphics
and machine
learning
industries, and its
mainstream
adoption

Our system does not go
against or disrespect any
particular culture or
social group

Our system could
support cultural
practice by
digitally capturing
one-to-one
recreations of
culturally
significant
locations (e.g.,
religious sites)

Our system will
remain culturally
accessible by
offering a visual
demonstration of
how to use our
system

Environmental Our system
captures the
beauty of
real-world
environments,
which may inspire
users to be more
environmentally
conscious

Even though our system
uses machine learning,
our model’s training is
not computationally
expensive when
compared to LLMs

Our system does
not require the
user to re-train the
Gaussian model
locally

Our system will not
affect any
environmental
habitat

Economic Our system
increases the
production quality
of renders for
smaller companies,
therefore creating
more competition

We mitigate any
potential 3D artist job
loss by allowing full
support of
industry-standard
tooling

We will make our
product free of
charge

Our system will not
financially affect our
users

7.3 VIRTUES

7.3.1 Team Virtues

Collaboration is central to our success, as we rely on diverse expertise and input to create an
innovative solution. To foster cooperation, we prioritize open communication and a culture of trust
where each team member feels comfortable sharing ideas and feedback. We hold weekly team
meetings and biweekly meetings with our advisor, Dr Mitra, to discuss progress, challenges, and
brainstorming sessions to ensure everyone is aligned on goals. Additionally, we use collaborative
tools and platforms, such as Google Drive (docs, slides, etc) and Figma, that allow for real-time
sharing and problem-solving, promoting collective ownership of the project.

Innovation is another central virtue of our team. Innovation is the driving force for our approach
to solving Novel View Synthesis problems. We encourage innovation by creating a team
environment where experimentation is encouraged, and each team member can propose and test
new ideas. We also promote innovation by continuing to explore new algorithms, techniques,
libraries, and software to continue improving our project's performance and quality. We also
prioritize learning and staying up to date with the latest papers and research, with some being
released during our design process. All in all, innovation ensures that our team has the knowledge
and resources to innovate effectively.

Empathy is an essential part of our virtues, as empathy allows us to understand our users' needs
and potential areas of concern. As previously mentioned, we aim to create a Unity package that
assists in the creative process for 3D artists by including our ML tools rather than outright replacing
the work they are assigned. We plan to continue addressing this virtue by gathering and analyzing
user feedback to ensure our solution meets their needs and genuinely assists and benefits their
work. We are mindful of how our package will affect the user's workflow and will continue to
empathize to ensure the best product we can provide.

7.3.2 Jackson Vanderheyden’s Virtues

One virtue I demonstrated in our senior design work was diligence. This virtue was important to me
because it showed a strong commitment to the project's success despite unexpected hardships. I
demonstrated this virtue by consistently contributing significant time towards our project
throughout the semester. I created an educational resource for the team and developed a stable
foundation for our hybrid rendering solution. Additionally, I made myself available to support team
members, which fostered collaboration and progress. This helped the project by ensuring the ease
of future development for the graphics portion and by providing resources and assistance to team
members.

A virtue that was important to me, but that I did not demonstrate as fully in my senior design work,
was attentiveness. This virtue was important to me because it ensured that all project aspects were
fully addressed and all members were aligned with their goals. I did not demonstrate this virtue
fully because I did not consistently hold our team accountable for the soft deadlines we set for
ourselves and occasionally prioritized other classes over ensuring the project was progressing as it
should. There also needed to be more communication between the graphics and machine learning
teams, leading to inefficiencies and misalignments, which could have been addressed proactively. To
demonstrate this virtue more effectively in the future, I planned to take a more active role in team

management by regularly checking in with all team members and setting more explicit weekly goals
to ensure alignment across the team.

7.3.3 Brian Xicon’s Virtues

One virtue I demonstrated in our senior design work was responsibility. This virtue was important
because it showed that I could be trusted to complete tasks critical to our team's success. I
demonstrated this virtue by meeting my deadlines and ensuring the machine learning modules
were thoroughly created. This helped the project by maintaining steady progress in our machine
learning tasks.

A virtue that was important to me, but I had not demonstrated fully in my senior design work, was
foresight. This virtue was significant to me because thinking ahead and anticipating potential
problems allowed our team to allocate the necessary time to address them. I recognized that I had
not demonstrated this virtue completely because I sometimes focused on immediate tasks and had
difficulty giving myself adequate time for certain tasks. To demonstrate this virtue more effectively
in the future, I planned to dedicate more time during our sprints to identify possible upcoming
challenges, allowing myself adequate time to solve them.

7.3.4 Luke Broglio’s Virtues

One virtue I have demonstrated in our senior design work is persistence. This virtue is important to
me because I think it is essential to the success of any project and is a strength I value. I have
demonstrated this virtue by continuing to actively work on our project even when I encountered
complicated or hard-to-diagnose issues. This has helped the project by allowing me to finish demos
or project components quicker.

Another virtue I worked to demonstrate, especially in the second semester, was collaboration. At
the end of the first semester, I set a goal to collaborate more in order to speed up development. To
meet this virtue, I made two steps of note, the first was to have a pair programming session with
Kyle so we could better understand each other's code. The other step I took was to increase my
participation in code reviews during merge requests.

7.3.5 Ethan Gasner’s Virtues

One virtue I have demonstrated in our senior design work thus far is accountability. This virtue is
important to me because I believe that if people are held accountable for their actions, it results in a
more productive and efficient work environment. I have demonstrated this virtue by ensuring that
all documentation assignments and weekly reports are finished and turned in on time. I specifically
check on the progress of assignments and notify individuals as a reminder to finish their assigned
portion of these documents. I am also the individual responsible for turning in these documents
and updating the team website as well. This has helped the project stay on track and ensure
documentation is finished on time.

A virtue that was important to me throughout this project, but that I recognized as underdeveloped
at the midpoint, was software sustainability. This virtue matters to me because I aim to create
software that is not only impactful in the short term but also maintainable and usable over a long
period. Earlier in the project, much of our work focused on prototypes and core functionality, with
limited attention to long-term maintainability.

Now, at the end of the project, I’ve made meaningful progress toward demonstrating this virtue. I
have taken steps to improve the structure and readability of the codebase by incorporating
consistent documentation and meaningful comments. I also worked to modularize key components
so that future developers can more easily understand, update, or extend our work. While there is
still room for improvement, I believe I have made a strong start toward aligning my work more
closely with the value of sustainable software development.

7.3.6 Kyle Kohl’s Virtues

One virtue I have demonstrated in our entirety of our senior design work is enthusiasm. This virtue
is important to me because I believe that without it, the work becomes a grind, and the motivation
to keep working disappears. I have done my best to demonstrate this virtue by encouraging and
helping out my team however I can. I can’t say I have done this perfectly, but I believe I have done
my best.

A virtue that is important to me is responsibility. This virtue is important to me because
responsibility is the basis for doing a good job. I am happy to look back and say that I worked hard
in this class and gave it the due effort. I was able to attend and participate in all our meetings or
give warning otherwise.

8 Conclusions

8.1 SUMMARY OF PROGRESS

Our project has made significant strides towards creating a system for novel view synthesis using
Gaussian splatting and traditional polygon model rendering. The system is designed to process
images or videos from the real world, create a 3D representation through Structure-from-Motion
(SfM), convert it into a scene of 3D Gaussians, and render the scene alongside user-defined polygon
meshes. We divided the system into two primary components: AI models that generate and
enhance the 3D Gaussian scene, and a Unity-based ray-traced renderer that handles real-time
rendering.

We’ve successfully developed a program that integrates 3D Gaussians by reading and loading them
to the GPU. We overrode the built-in Unity rendering pipeline by creating a command buffer and
inserting the execution at the end of the After Everything Camera Event. The hybrid ray tracer
efficiently renders PBR polygon meshes and 3D Gaussian models using multi-intersection and a
BVH approach. We have packaged our code in a succinct, easy-to-use package for simple
distribution in Unity.

8.2 VALUE PROVIDED

The core value of this system lies in its seamless integration with Unity, providing an intuitive
platform for real-time 3D visualization. By combining Gaussian splatting with traditional polygon
mesh rendering, our system offers a hybrid approach that enhances scene detail and realism. The
flexibility to render both Gaussians and polygons together within Unity allows for more dynamic
and diverse scene creation, making it a powerful tool for users working with complex 3D
environments.

The integration with Unity not only facilitates ease of use but also enables users to interact with
and modify their scenes in real-time. This combination of Gaussian-based rendering and traditional
polygon meshes creates a unique rendering workflow that gives users greater control over the
appearance and performance of their 3D scenes. The ability to modify lighting dynamically in Unity
further adds to the system’s versatility, offering a high degree of customization for visual output.

In terms of performance, the system achieves the target of real-time rendering, maintaining at least
30 frames per second during model rendering, and offers scalable performance across a range of
hardware configurations. This makes the system accessible to a broad range of users, from those
with high-end hardware to those using more modest systems, with the only restriction being the
need for CUDA-compatible hardware when choosing to use the optimizer.

8.3 NEXT STEPS

Although the project has progressed well, we acknowledge that there are still challenges to address,
particularly in the areas of model quality and packaging trained machine learning models for Unity
integration. Moving forward, the next steps include refining the AI model to improve Gaussian
density during the optimizer, which was not accomplished, and further optimizing the raytracer for
even faster performance, as well as the inclusion of physically based rendering techniques.
Additionally, the task of finalizing the packaging process to ensure that the system is easily
distributable as a Unity package still remains. Lastly, further testing and iteration will be required to
fully optimize the solution for a broader range of hardware.

While we've made substantial progress towards our goals, there are still opportunities to enhance
the system's performance and quality as well as user experience. We're confident that with
continued effort, the remaining challenges can be overcome.

9 References
B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, “3D Gaussian Splatting for Real-Time
Radiance Field Rendering,” ACM Transactions on Graphics, vol. 42, no. 4, Jul. 4AD, [Online].
Available: https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

Gao, J., et al. "Relightable 3D Gaussian: Real-time Point Cloud Relighting with BRDF Decomposition
and Ray Tracing," in arXiv:2311.16043, 2023.

Nicolas Moenne-Loccoz, undefined., et al. "3D Gaussian Ray Tracing: Fast Tracing of Particle
Scenes," in ACM Transactions on Graphics and SIGGRAPH Asia, 2024.

10 Appendices
Any additional information that would be helpful to the evaluation of your design document?

If you have any large graphs, tables, or similar data that do not directly pertain to the problem but
help support it, include it here. This would also be a good area to include the hardware/software

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

manuals used. May include CAD files, circuit schematics, layout, etc, PCB testing issues, etc.,
Software bugs, etc.

APPENDIX 1 – OPERATION MANUAL

PREREQUISITES BEFORE USE:

Software Requirements:

-​ Must have Python 3.10+
-​ Must have the plyfile library installed
-​ Must have the ipython library installed
-​ Must have the torch library installed
-​ Must have opencv-python library installed
-​ Must have torchvision library installed
-​ Must have tkinter library installed. (tkinter must be installed globally)
-​ Must have Unity installed on your computer.
-​ Must have CUDA installed on your computer.
-​ Must have Git installed on your computer.

Hardware Requirements:

-​ Must have an NVIDIA graphics card capable of running CUDA for optimizing 3D
Gaussians.

INSTALLATION

1. Install Python

Follow these instructions for Windows.

Follow these instructions for Mac.

1.​ Download Python Executable Installer
2.​ Run Executable Installer
3.​ Add Python to PATH during installation
4.​ Verify Python is installed on Windows
5.​ Verify pip is installed on Windows

2. Install tkinter

For Windows

Run this command in your terminal

pip install tkinter

For Linux

sudo apt-get install python3-tk

https://phoenixnap.com/kb/how-to-install-python-3-windows
https://phoenixnap.com/kb/install-python-mac
https://www.python.org/downloads/

3. Install other dependencies

Run this command in your terminal:

pip install plyfile ipython torch torchvision opencv-python

PIPELINE OVERVIEW

FEATURES

-​ Seamless Structure-from-Motion integration
-​ Convert video into a fully modeled 3D scene
-​ Hybrid Triangle-Gaussian-based scene rendering
-​ Unity-compatible real-time ray tracer

FILE STRUCTURE

Assets/

└── Hybrid Relightable 3D Gaussian Rendering/

 ├── Scripts/

 ├── Prefabs/

 ├── Materials/

 ├── Textures/

 ├── Scenes/

 └── Documentation/

USAGE

Setup Project

1.​ Start a new Unity project

2.​ Open the Package Mangager

●​ It can be found within the Window tab.

3.​ Add the package from git

1.​ Click on the '+' symbol towards the top of the window
2.​ Click Add Package from git URL
3.​ Enter the URL

https://github.com/sdmay25-40/Hybrid-Relightable-3D-Gaussian-Rendering.git.

https://github.com/sdmay25-40/Hybrid-Relightable-3D-Gaussian-Rendering.git

2.​ The project should now be able to be found in the Packages folder of the project explorer.

3.​ Import the 3D Model Generation Scene from the Samples tab of the package.

Build Gaussian Model with machine learning

1.​ Open the 3D Model Generation Scene from the Project Explorer
2.​ In the python script runner object set the Python script runner attribute to be the path to

your python executable. ‘

3.​ Run the unity scene
4.​ When prompted, select the video files you desire to turn into a 3D model.

5.​ The progress of the render is outputted to the Unity Console.

Renderer Setup

1.​ Add the Main Camera prefab from the Runtime/Prefabs folder of the Hybrid Relightable 3D
Gaussian package to your scene.

●​ Remove any other cameras.
2.​ For every Gaussian model you would like to render add a GaussianModel prefab from the

Runtime/Prefabs folder.
●​ Then drag the .ply model to the Gaussian File attribute.
●​ You might need to adjust the Gaussian Space Scale attribute based on the gaussians

look in the scene.

3.​ Add any polygon models you want to render to the scene.
4.​ Run the scene by pressing the play button.

APPENDIX 2 – ALTERNATIVE/INITIAL VERSION OF DESIGN

●​ Vulcan or GLSL Version

o​ We initially considered building our own engine using a graphics API such as
vulcan or GLSL but settled upon Unity so we could focus on the renderer itself
more.

●​ Full Relightable Gaussian Version

o​ Our original goal was for our machine learning model to extra the normal vectors
and PBR properties of Gaussians so they could have their lighting data changed in
real time. This had to be removed due to time constraints.

APPENDIX 3 – OTHER CONSIDERATIONS

●​ Overall, the team rose up to meet the challenges of this project. We all grew a lot in our
skills repertoire to make this project come to fruition. The firsthand experience of seeing a
project come from start to finish has impacted the whole team and we will proudly bring
that experience with us to our next team.

●​ Our project can be added to unity with this Git link:
https://github.com/sdmay25-40/Hybrid-Relightable-3D-Gaussian-Rendering.git.

APPENDIX 4 – CODE

●​ Code on Git Lab

APPENDIX 5 – TEAM CONTRACT

Complete each section as completely and concisely as possible. We strongly recommend using
tables or bulleted lists when applicable.

TEAM MEMBERS

Team Members:

1) _____Jackson Vanderheyden_______ 2) ______Brian Xicon_____________

3) _____Ethan Gasner ______________ 4) ______Kyle Kohl ____________

5) _____Luke Broglio _______________

REQUIRED SKILL SETS FOR YOUR PROJECT

(If feasible, tie them to the requirements.)

SKILL SETS COVERED BY THE TEAM

1.​ The skills, expertise, and unique perspectives Jackson Vanderheyden brings to the team are:
computer graphics industry experience, multiple Unity projects, & previous experience
implementing ray tracing.

2.​ The skills, expertise, and unique perspectives Brian Xicon brings to the team are: C, C+
+,HTML, CSS, JS, Python, PyTorch experience, Machine Learning experience, and
Computer Vision experience.

3.​ The skills, expertise, and unique perspectives Ethan Gasner brings to the team are: C, C++,
python, AI Experience, Machine learning experience, Unity Experience, unique Cyber
security perspective, JavaScript, HTML/CSS. Additionally, a cooperative and easygoing
attitude.

4.​ The skills, expertise, and unique perspectives Kyle Kohl brings to the team are: C, C++, Java,
Python, a little bit of HTML and CSS. He has the definite advantage of being an extrovert
that loves to encourage others. Lots of experience in the communication role.

5.​ The skills, expertise, and unique perspectives Luke Broglio brings to the team are:
Experience with C, C++, python, graphics programming, Unity, HTML/CSS, Javascript,
writing a raytracer and experience with working in agile/scrum development environments.

https://git.ece.iastate.edu/sd/sdmay25-40

PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM

Typically, Waterfall or Agile for project management.

INDIVIDUAL PROJECT MANAGEMENT ROLES

(Enumerate which team member plays what role.)

 1 TEAM CONTRACT

Team Members:

1) _____Jackson Vanderheyden_______ 2) ______Brian Xicon_____________

3) _____Ethan Gasner ______________ 4) ______Kyle Kohl ____________

5) _____ Luke Broglio _______________

TEAM PROCEDURES

1)​ Face to face Friday at 9:30AM serves as our regular team meeting schedule. Additionally,
Meet on Tuesdays at 4pm biweekly with our advisor: Professor Mitra

2)​ Discord will be used as our preferred method of communication for updates, reminders,
issues, and scheduling.

3)​ Consensus based decision making policy will be employed, ensuring all members
contribute to the discussion.

4)​ The Communication Manager will take primary responsibility for meeting record keeping.
All records will be stored on the relevant Figma page.

5)​ Preferred method of communication updates, reminders, issues, and scheduling (e.g.,
e-mail, phone, app, face-to-face):

6)​ Decision-making policy (e.g., consensus, majority vote):

7)​ Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes be
shared/archived):

PARTICIPATION EXPECTATIONS

1.​ All team members must punctually attend (i.e., be no more than 10 minutes tardy) and
participate in all meetings. All absences must be excused 24 hours prior to the set meeting
time.

2.​ All team members are expected to complete their assigned work prior to the agreed upon
deadline.

3.​ All team members must continuously and accurately report progress on the Kanban board
and in meetings. Unexpected delays resulting in timeline changes must be reported as soon
as possible.

4.​ All team members are expected to provide feedback on all team decisions and commit the
necessary number of hours outside of class time to complete assigned work before the
agreed upon deadline.

LEADERSHIP

1.​ Discord will be used as an informal Q&A forum to help support and guide the work of all
team members.

2.​ Team members should provide positive peer to peer feedback to recognize the
contributions of all team members.

3.​ The following roles serve as general, not rigid, guidelines, and therefore, work traditionally
specified for a particular managerial role was not exclusively designated to that individual.

4.​ Kyle will serve as the Communication Manager. Their duties include serving as the primary
point of contact for all stakeholder communication, scheduling meetings, and recording
relevant meeting information (e.g., attendance, meeting content, etc.).

5.​ Ethan Gasner will serve as the Documentation Manager. Their duties include maintaining
all living documentation (e.g., project charter, product models, etc.) related to the project
and leading primary direction on the project website.

6.​ Jackson Vanderheyden will serve as the Graphics Scope Manager. Their duties include
identifying field specific functional and nonfunctional requirements and assisting the
Schedule Manager in formulating an accurate timeline.

7.​ Brian Xicon will serve as the Machine Learning Scope Manager. Their duties include
identifying field specific functional and nonfunctional requirements and assisting the
Schedule Manager in formulating an accurate timeline.

8.​ Luke Broglio will serve as the Schedule Manager. Their duties include communicating with
the Graphics & Machine Learning Scope Managers to create timelines and deliverables and
orchestrate development resources through sprints.

COLLABORATION AND INCLUSION

6.​ The skills, expertise, and unique perspectives Jackson Vanderheyden brings to the team are:
computer graphics industry experience, multiple Unity projects, & previous experience
implementing ray tracing.

7.​ The skills, expertise, and unique perspectives Brian Xicon brings to the team are: C, C+
+,HTML, CSS, JS, Python, PyTorch experience, Machine Learning experience, and
Computer Vision experience.

8.​ The skills, expertise, and unique perspectives Ethan Gasner brings to the team are: C, C++,
python, AI Experience, Machine learning experience, Unity Experience, unique Cyber
security perspective, JavaScript, HTML/CSS. Additionally, a cooperative and easygoing
attitude.

9.​ The skills, expertise, and unique perspectives Kyle Kohl brings to the team are: C, C++, Java,
Python, a little bit of HTML and CSS. He has the definite advantage of being an extrovert
that loves to encourage others. Lots of experience in the communication role.

10.​ The skills, expertise, and unique perspectives Luke Broglio brings to the team are:
Experience with C, C++, python, graphics programming, Unity, HTML/CSS, Javascript,
writing a raytracer and experience with working in agile/scrum development environments.

11.​ Strategies for encouraging and supporting contributions and ideas from all team members:
Through the following, Create a safe and open Environment, Use of Structured Discussion,
Leverage Team Diversity. Ask Open Ended Questions, Active listening and
Acknowledgment.

12.​ Procedures for identifying and resolving collaboration or inclusion issues (e.g., how will a
team member inform the team that the team environment is obstructing their opportunity
or ability to contribute?) Our group will be very open with each other, if any of us have any
concerns with the environment all of us will be open to feedback and work together to
discover steps to resolve the issue.

GOAL-SETTING, PLANNING, AND EXECUTION

1.​ Team goals for this semester: Have a working prototype raytracer that uses 3D Gaussians

2.​ Strategies for planning and assigning individual and team work: assign tasks primarily
based on individual role then assign tasks based on interest and best fit.

3.​ Strategies for keeping on task: General time management techniques based on individuals.

CONSEQUENCES FOR NOT ADHERING TO THE TEAM CONTRACT

1.​ If an individual does not adhere to the above standards, We will start off with verbal
warnings from the team and potentially a meeting if necessary.

2.​ If this continues to become an issue we will bring this up with the professors and course
coordinator.

a.​ I participated in formulating the standards, roles, and procedures as stated in this contract.

b.​ I understand that I am obligated to abide by these terms and conditions.

c.​ I understand that if I do not abide by these terms and conditions, I will suffer the
consequences as stated in this contract.

1) _______Jackson Vanderheyden_____________________ DATE _______9/13/2024______

2) _______Brian Xicon______________________________ DATE _______9/13/2024______

3) _______Ethan Gasner_____________________________ DATE _______9/13/2024______

4) _______Kyle Kohl________________________________ DATE ______9/13/2024______

5) _______Luke Broglio______________________________ DATE _____9/13/2024______

	Hybrid Relightable 3D Gaussian Rendering
	Executive Summary
	Learning Summary
	DEVELOPMENT STANDARDS & PRACTICES USED
	SUMMARY OF REQUIREMENTS
	APPLICABLE COURSES FROM IOWA STATE UNIVERSITY CURRICULUM
	NEW SKILLS/KNOWLEDGE ACQUIRED THAT WERE NOT TAUGHT IN COURSES

	1 Introduction
	1.1 PROBLEM STATEMENT
	1.2 INTENDED USERS

	2 Requirements, Constraints, And Standards
	2.1 REQUIREMENTS & CONSTRAINTS
	2.1.1 Ubiquitous Functional Requirements
	2.1.2 Event-Driven Functional Requirements
	2.1.3 ​State-Driven Functional Requirements
	2.1.4 Look & Feel Nonfunctional Requirements
	2.1.5 Usability Nonfunctional Requirements
	2.1.6 Performance Nonfunctional Requirements
	2.1.7 Operational Nonfunctional Requirements

	2.2 ENGINEERING STANDARDS

	3 Project Plan
	3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES
	3.2 TASK DECOMPOSITION
	3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA
	3.4 PROJECT TIMELINE/SCHEDULE
	3.5 RISKS AND RISK MANAGEMENT/MITIGATION
	3.6 PERSONNEL EFFORT REQUIREMENTS
	3.7 OTHER RESOURCE REQUIREMENTS

	4 Design
	4.1 DESIGN CONTEXT
	4.1.1 Broader Context
	4.1.2 Prior Work/Solutions
	4.1.3 Technical Complexity

	4.2 DESIGN EXPLORATION
	4.2.1 Design Decisions
	4.2.2 Ideation
	4.2.3 Decision-Making and Trade-Off

	4.3 FINAL DESIGN
	4.3.1 Overview
	4.3.2 Detailed Design and Visual(s)
	4.3.3 Functionality
	4.3.4 Areas of Challenge

	4.4 TECHNOLOGY CONSIDERATIONS

	5 Testing
	5.1 UNIT TESTING
	5.2 INTERFACE TESTING
	5.3 INTEGRATION TESTING
	5.4 SYSTEM TESTING
	5.5 REGRESSION TESTING
	5.6 ACCEPTANCE TESTING
	5.7 USER TESTING
	5.8 COMPATIBILITY TESTING
	5.9 RESULTS

	6 Implementation
	6.1 DESIGN ANALYSIS

	7 Ethics and Professional Responsibility
	7.1 AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS
	7.2 FOUR PRINCIPLES
	7.3 VIRTUES
	7.3.1 Team Virtues
	7.3.2 Jackson Vanderheyden’s Virtues
	7.3.3 Brian Xicon’s Virtues
	7.3.4 Luke Broglio’s Virtues
	7.3.5 Ethan Gasner’s Virtues
	7.3.6 Kyle Kohl’s Virtues

	8 Conclusions
	8.1 SUMMARY OF PROGRESS
	8.2 VALUE PROVIDED
	8.3 NEXT STEPS

	9 References
	10 Appendices
	APPENDIX 1 – OPERATION MANUAL
	PREREQUISITES BEFORE USE:
	Software Requirements:
	Hardware Requirements:

	INSTALLATION
	1. Install Python
	2. Install tkinter
	For Windows
	For Linux

	3. Install other dependencies

	
	
	PIPELINE OVERVIEW
	FEATURES
	FILE STRUCTURE
	USAGE
	Setup Project
	Build Gaussian Model with machine learning
	Renderer Setup

	APPENDIX 2 – ALTERNATIVE/INITIAL VERSION OF DESIGN
	APPENDIX 3 – OTHER CONSIDERATIONS
	APPENDIX 4 – CODE
	APPENDIX 5 – TEAM CONTRACT
	TEAM MEMBERS
	REQUIRED SKILL SETS FOR YOUR PROJECT
	SKILL SETS COVERED BY THE TEAM
	PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM
	INDIVIDUAL PROJECT MANAGEMENT ROLES
	 1 TEAM CONTRACT
	TEAM PROCEDURES
	PARTICIPATION EXPECTATIONS
	LEADERSHIP
	COLLABORATION AND INCLUSION
	GOAL-SETTING, PLANNING, AND EXECUTION
	CONSEQUENCES FOR NOT ADHERING TO THE TEAM CONTRACT

